
7. EXAMPLES OF PROBABILITY MEASURES ON THE LINE

There are many important probability measures that occur frequently in probability and in the real world. We give
some examples below and expect you to familiarize yourself with each of them.

Example 28. The examples below have CDFs of the form F(x) =
R x
−∞ f (t)dt where f is a non-negative integrable

function with
R

f = 1. In such cases f is called the density or pdf (probability density function). Clearly F is
continuous and non-decreasing and tends to 0 and 1 at ∞ and −∞ respectively. Hence, there do exist probability
measures on R with the corresponding density.

(1) Normal distribution. For fixed a∈R and σ2 > 0, N(a,σ2) is the p.m. on R with density 1
σ
√

2π e−(x−a)2/2σ2
du.

F is clearly increasing and continuous and F(−∞) = 0. That F(+∞) = 1 is not so obvious but true!
(2) Gamma distribution with shape parameter α > −1 and scale parameter λ > 0 is the p.m. with density

f (x) = λα−1

Γ(α)xα−1e−λx for x > 0.
(3) Exponential distribution. Exponential(λ) is the p.m. with density f (x) = λe−λx for x ≥ 0 and f (x) = 0 if

x < 0. This is a special case of Gamma distribution, but important enough to have its own name.
(4) Beta distribution. For parameters a > −1, b > −1, the Beta(a,b) distribution is the p.m. with density

B(a,b)−1xa−1(1− x)b−1 for x ∈ [0,1]. Here B(a,b) is the beta function, equal to Γ(a+b)
Γ(a)Γ(b) . (Why does it

integrate to 1?).
(5) Uniform distribution on [a,b] is the p.m. with density f (x) = 1

b−a for x∈ [a,b]. For example, with a = 0,b =
1, this is a special case of the Beta distribution.

(6) Cauchy distribution. This is the p.m. with density 1
π(1+x2) on the whole line. Unlike all the previous

examples, this distribution has “heavy tails”

You may have seen the following discrete probability measures. They are very important too and will recur often.

Example 29. The examples below have CDFs of the form F(x) = ∑ui≤x p(xi)dt, where {xi} is a fixed countable set,
and p(xi) are non-negative numbers that add to one. In such cases p is called the pmf (probability density function).
and from what we have shown, there do exist probability measures on R with the corresponding density or CDF.

(1) Binomial distribution. Binomial(n, p), with n ∈ N and p ∈ [0,1], has the pmf p(k) =
(n

k

)
pkqn−k for k =

0,1, . . . ,n.
(2) Bernoulli distribution. p(1) = p and p(0) = 1− p for some p ∈ [0,1]. Same as Binomail(1, p).
(3) Poisson(λ) distribution with parameter λ≥ 0 has p.m.f p(k) = e−λ λk

k! for k = 0,1,2, . . ..
(4) Geometric(p) distribution with parameter p ∈ [0,1] has p.m.f p(k) = qk p for k = 0,1,2, . . ..
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8. A METRIC ON THE SPACE OF PROBABILITY MEASURES ON Rd

What kind of space is P (Rd) (the space of p.m.s on Rd)? It is clearly a convex set (this is true for p.m.s on any
sample space and σ-algebra).

We saw that for every Borel p.m. on Rd there is associated a unique CDF. This suggests a way of defining a
distance function on P (Rd) using their CDFs. Let D(µ,ν) = supx∈Rd |Fµ(x)−Fν(x)|. Since CDFs are bounded
between 0 and 1, this is well-defined and one can easily check that it gives a metric on P (Rd).

Is this the metric we want to live with? For a ∈ Rd , we denote by δa the p.m. for which δa(A) = 1 if A # a and
0 otherwise (although this p.m. can be defined on all subsets, we just look at it as a Borel measure). If a $= b, it is
easy to see that D(δa,δb) = 1. Thus, even when an → a in Rd , we do not get convergence of δan to δa. This is an
undesirable feature and hence we would like a weaker metric.

Definition 30. For µ,ν ∈ P (Rd), define the Lévy distance between them as (here 1 = (1,1, . . . ,1))

d(µ,ν) := inf{u > 0 : Fµ(x+u1)+u≥ Fν(x), Fν(x+u1)+u≥ Fµ(x) ∀x ∈ Rd}.

If d(µn,µ) → 0, we say that µn converges weakly to µ and write µn
d→ µ. [...breathe slowly and meditate on this

definition for a few moments...]

First of all, d(µ,ν) ≤ 1. That d is indeed a metric is an easy exercise. If an → a in Rd , does δan converge to δa?
Indeed d(δa,δb) = (maxi |bi−ai|)∧1 and hence d(δan ,a)→ 0.

Exercise 31. Let µn = 1
n ∑n

k=1 δk/n. Show directly by definition that d(µn,m)→ 0. What about D(µn,µ)?

How does convergence in the metric d show in terms of CDFs?

Proposition 32. µn
d→ µ if and only if Fµn(x)→ Fµ(x) for all continuity points x of Fµ.

Proof. Suppose µn
d→ µ. Let x ∈ Rd and fix u > 0. Then for large enough n, we have Fµ(x + u1) + u ≥ Fµn(x),

hence limsupFµn(x)≤ Fµ(x+u1)+u for all u > 0. By right continuity of Fµ, we get limsupFµn(x)≤ Fµ(x). Further,
Fµn(x)+u≥ Fµ(x−u1) for large n, hence liminfFµn(x)≥ Fµ(x−u) for all u. If x is a continuity point of Fµ, we can
let u→ 0 and get liminfFµn(x)≥ Fµ(x). Thus Fµn(x)→ Fµ(x).

For simplicity let d = 1. Suppose Fn → F at all continuity points of F . Fix any u > 0. Find continuity points (of
F) x1 < x2 < .. . < xm such that xi+1 ≤ xi + u. This can be done because continuity points are dense. Fix N so that
d(µn,µ) < u for n≥ N. Henceforth, let n≥ N.

If x ∈ R, then either x ∈ [x j−1,x j] for some j or else x < x1 or x > x1. First suppose x ∈ [x j−1,x j]. Then

F(x+u)≥ F(x j)≥ Fn(x j)−u≥ Fn(x)−u, Fn(x+u)≥ Fn(x j)≥ F(x j)−u≥ F(x)−u.

If x < x1, then F(x+u)+u≥ u≥ F(x1)≥ Fn(x1)−u. Similarly the other requisite inequalities, and we finally have

Fn(x+2u)+2u≥ F(x) and F(x+2u)+2u≥ Fn(x).

Thus d(µn,µ)≤ u. Hence d(µn,µ)→ 0. !

11



9. COMPACT SUBSETS OF P (Rd)

Often we face problems like the following. A functional L : P (Rd)→ R is given, and we would like to find the
p.m. µ that minimizes L(µ). By definition, we can find nearly optimal p.m.s µn satisfying L(µn)− 1

n ≤ infν L(ν).
Then we might expect that if some subsequence µnk converged to a p.m. µ, then that µ might be the optimal solution
we are searching for. Thus we are faced with the question of characterizing compact subsets of P (Rd), so that
existence of convergent subsequences can be asserted.
Looking for a convergent subsequence: Let µn be a sequence in P (Rd). We would like to see if a convergent
subsequence can be extracted. Write Fn for Fµn . For any fixed x ∈ Rd , Fn(x) is a bounded sequence of reals and
hence we can find a subsequence {nk} such that Fnk(x) converges.

Fix a dense subset S = {x1,x2, . . .} of Rd . Then, by the observation above, we can find a subsequence {n1,k}k
such that Fn1,k(x1) converges to some number in [0,1] that we shall denote G(x1). Then extract a further subsequence
{n2,k}k ⊂ {n1,k}k such that Fn2,k(x2)→ G(x2), another number in [0,1]. Of course, we also have Fn2,k(x1)→ G(x1).
Continuing this way, we get subsequences {n1,k} ⊃ {n2,k} ⊃ . . .{n!,k} . . . such that for each !, as k → ∞, we have
Fn!, j(x j)→ G(x j) for each j ≤ !.

The diagonal sbsequence {n!,!} is ultimately the subsequence of each of the above obtained subsequences and
therefore, Fn!,!(x j)→ G(x j) for all j.

To define the limiting function on the whole line, set F(x) := inf{G(x j) : j for which x j > x}. F is well defined,
takes values in [0,1] and is non-decreasing. It is also right-continuous, because if yn ↓ y, then for any j for which
x j > y, it is also true that x j > yn for sufficiently large n. Thus liminfn→∞ G(yn) ≤ inf

x j>y
G(x j) = F(y). Lastly, if y is

any continuity point of F , then for any δ > 0, we can find i, j such that y−δ < xi < y < x j < y+δ. Therefore

F(y−δ)≤ G(xi) = limFn!,!(xi)≤ liminfFn!,!(y)≤ limsupFn!,!(y)≤ limFn!,!(x j) = G(x j)≤ F(y+δ).

The equalities are by prperty of the subsequence {n!,!}, the inner two inequalities are obvious, and the outer two
inequalities follow from the definition of F in terms of G (and the fact that G is nondecreasing). Since F is continuous
at y, we get limFn!,!(y) = F(y).

If only we could show that F(+∞) = 1 and F(−∞) = 0, then F would be the CDF of some p.m. µ and we would
immediately get µn

d→ µ. But this is false in general!
Example 33. Consider δn. Clearly Fδn(x)→ 0 for all x if n→+∞ and Fδn(x)→ 1 for all x if n→−∞. Even if we
pass to subsequences, the limiting function is identically zero or identically one, and neither of these is a CDF of a
p.m. The problem is that mass escapes to infinity. To get weak convergence to a probability measure, we need to
impose a condition to avoid this sort of situation.
Definition 34. A family {µα}α∈I ⊂ P (Rd) is said to be tight if for any ε > 0, there is a compact set Kε ⊂ Rd such
that µα(Kε)≥ 1− ε for all α ∈ I.

Example 35. Suppose the family has only one p.m. µ. Since [−n,n]d increase to Rd , given ε > 0, for a large enough
n, we have µ([−n,n]d)≥ 1− ε. Hence {µ} is tight. If the family is finite, tightness is again clear.

Take d = 1 and let µn be p.m.s with Fn(x) = F(x− n) (where F is a fixed CDF), then {µn} is not tight. This is
because given any [−M,M], if n is large enough, µn([−M,M]) can be made arbitrarily small. Similarly {δn} is not
tight.
Theorem 36 (Helly’s selection principle). (a) A sequence of probability measures on Rd is tight if and only if every
subsequence has a further subsequence that converges weakly. (b) Equivalently a subset of P (Rd) is precompact
if and only if it is tight.
Proof. (a) If µn is a tight sequence in P (Rd), then any subsequence is also tight. By the earlier discussion, given any
subsequence {nk}, we may extract a further subsequence n!,k and find a non-decreasing right continuous function F
(taking values in [0,1]) such that Fn!,k(x)→F(x) for all continuity points x of F . Fix A > 0 such that µn[−A,A]≥ 1−ε
and such that A is a continuity point of F . Then F(A) = limk→∞ Fn!,k(A) ≥ 1− ε. Thus F(+∞) = 1. Similarly one

can show that F(−∞) = 0. This shows that F = Fµ for some µ ∈ P (Rd) and thus µn!,k
d→ µ as k→ ∞.

Conversely, if the sequence {µn} is not tight, then for any A > 0, we can find an infinite sequence nk such that
µnk(−A,A) < 1− ε (why?). Then, either Fnk(A) < 1− ε

2 for infinitely many k or Fnk(−A) < ε
2 . Thus, for any A > 0,

we have F(A) < 1− ε
2 or F(−A) < ε

2 . Thus F is not a CDF of a p.m., and we see that the subsequence {nk} has no
further subsequence than can converge to a probability measure.

(b) Standard facts about convergence in metric spaces and part (a).
!
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